Oscillatory Ca2+ dynamics and cell cycle resumption at fertilization in mammals: a modelling approach.
نویسندگان
چکیده
Fertilization in mammals is accompanied by Ca(2+) oscillations in the egg cytoplasm, leading to exit from meiosis and entry into the first embryonic cell cycle. The signal transduction pathway linking these Ca(2+) changes to cell-cycle related kinases has not yet been fully elucidated, but involves activation of calmodulin-dependent kinase II (CaMKII). Here, we develop a computational model to investigate the mechanism by which cell cycle resumption can be sensitive to the temporal pattern of Ca(2+) increases. Using a model for CaMKII activation that reproduces the frequency sensitivity of this kinase, simulations confirm that Ca(2+) spikes are accompanied by in phase variations in the level of CaMKII activity and suggest that in most mammalian species, Ca(2+) spikes are well suited to maximize CaMKII activation. The full model assumes that CaMKII brings about a decrease in the level of cyclinB-cdk1 by two pathways, only one of which is CSF-dependent. Parameters are selected to account for the experimental observations where mouse eggs were artificially activated by different Ca(2+) stimulatory protocols. The model is then used in the context of 'assisted oocyte activation (AOA)' to investigate why the best rates of successful activation are obtained when eggs are submitted to two applications of Ca(2+) ionophores.
منابع مشابه
Calmodulin-dependent protein kinase II, and not protein kinase C, is sufficient for triggering cell-cycle resumption in mammalian eggs.
Mouse eggs arrest at metaphase II following ovulation and are only triggered to complete meiosis when fertilized. Sperm break the cell-cycle arrest by a long-lasting series of Ca2+ spikes that lead to an activation of the anaphase-promoting complex/cyclosome. The signal transduction pathway is not fully resolved but both protein kinase C (PKC) and calmodulin-dependent protein kinase II (CamKII)...
متن کاملPhosphorylation of IP3R1 and the regulation of [Ca2+]i responses at fertilization: a role for the MAP kinase pathway.
A sperm-induced intracellular Ca2+ signal ([Ca2+]i) underlies the initiation of embryo development in most species studied to date. The inositol 1,4,5 trisphosphate receptor type 1 (IP3R1) in mammals, or its homologue in other species, is thought to mediate the majority of this Ca2+ release. IP3R1-mediated Ca2+ release is regulated during oocyte maturation such that it reaches maximal effective...
متن کاملSpatiotemporal dynamics of intracellular calcium in the mouse egg injected with a spermatozoon.
Oscillatory rises in intracellular Ca2+ concentration ([Ca2+]i) are the pivotal signal in the fertilization of mammalian eggs. The spatiotemporal dynamics of [Ca2+]i rises in mouse eggs subjected to intracytoplasmic sperm injection (ICSI) were analysed by Ca2+ imaging and compared with those subjected to in-vitro fertilization (IVF). The first Ca2+ transient occurred 15-30 min after ICSI in mos...
متن کاملProtein kinase C action at fertilization: overstated or undervalued?
At fertilization, the spermatozoon is generally held to generate two important second messengers, inositol trisphosphate and diacylglycerol. A similar situation arises when these signalling molecules are generated after a hormone binds to its plasma membrane receptor. This signalling mechanism releases intracellular Ca2+ which causes cortical granule release and initiates meiotic resumption. Th...
متن کاملCalcium at fertilization and in early development.
Fertilization calcium waves are introduced, and the evidence from which we can infer general mechanisms of these waves is presented. The two main classes of hypotheses put forward to explain the generation of the fertilization calcium wave are set out, and it is concluded that initiation of the fertilization calcium wave can be most generally explained in invertebrates by a mechanism in which a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The International journal of developmental biology
دوره 54 4 شماره
صفحات -
تاریخ انتشار 2010